Robust 3D Face Recognition from Expression Categorisation
نویسندگان
چکیده
The task of Face Recognition is often cited as being complicated by the presence of lighting and expression variation. In this article a novel combination of facial expression categorisation and 3D Face Recognition is used to provide enhanced recognition performance. The use of 3D face data alleviates performance issues related to pose and illumination. Part-face decomposition is combined with a novel adaptive weighting scheme to increase robustness to expression variation. By using local features instead of a monolithic approach, this system configuration allows for expression variability to be modelled and aid in the fusion process. The system is tested on the Face Recognition Grand Challenge (FRGC) database, currently the largest available dataset of 3D faces. The sensitivity of the proposed approach is also evaluated in the presence of systematic error in the expression classification stage.
منابع مشابه
Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کامل3D Face Recognition using Patch Geodesic Derivative Pattern
In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...
متن کاملA Robust 3D Face Recognition Algorithm Using Passive Stereo Vision
The recognition performance of the conventional 3D face recognition algorithm using ICP (Iterative Closest Point) is degraded for the 3D face data with expression changes. Addressing this problem, we consider the use of the expression-invariant local regions of a face. We find the expression-invariant regions through the distance analysis between 3D face data with the neutral expression and smi...
متن کاملOn Decomposing an Unseen 3D Face into Neutral Face and Expression Deformations
This paper presents a technique for decomposing an unseen 3D face under any facial expression into an estimated 3D neutral face and expression deformations (the shape residue between the non-neutral and the estimated neutral 3D face). We show that this decomposition gives a robust facial expression classification and improves the accuracy of an off-the-shelf 3D face recognition system. The prop...
متن کاملRobust 3D Face Recognition by Using Shape Filtering
Achieving high accuracy in the presence of expression variation remains one of the most challenging aspects of 3D face recognition. In this paper, we propose a novel recognition approach for robust and efficient matching. The framework is based on shape processing filters that divide face into three components according to its frequency spectral. Low-frequency band mainly corresponds to express...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007